Structural Analysis of Oriented Poly(ε-Caprolactone) Including CaCO₃ Particles with ¹³C Solid-State NMR

TAKURO ITO,¹ YUJI YAMAGUCHI,¹ HIROTO WATANABE,¹ TETUSO ASAKURA²

¹ Department of Operations engineering Toyo Seikan, Ltd, Yokohama, Kanagawa, 230-0047, Japan

² Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan

Received 19 June 2000; accepted 17 August 2000

ABSTRACT: The results of a study of the relation between the oriented structure and drawn Poly(ε -caprolactone) specimens including CaCO₃ particles and their dynamic mechanical properties are presented. The loss elasticity, E", showed almost the same curve for both undrawn sheets and drawn sheets as a function of CaCO₃ content. On the other hand, the storage modulus, E', of drawn sheets increased nonlinearly with increasing $CaCO_3$ content, and their curve showed lower E' values than those of undrawn sheets. By simulation of ¹³C CP NMR spectra of drawn PCL/CaCO₃ sheets, both oriented and unoriented components were observed. The distribution parameter, p, of drawn PCL/CaCO₃ sheets was 13° , which was larger than those (8°) of drawn PCL. Further, the fraction of the unoriented component increased with increasing $CaCO_3$ content. Thus, adding CaCO₃ particles into the PCL, the arrangement of the oriented component was disturbed and decreased. In addition, from the line shape analyses of ¹³C CP MAS NMR spectra, four peaks were obtained in not only undrawn sheets but also in drawn sheets of both PCL and PCL/CaCO₃ compounds. Besides, structural change occurred at only drawn PCL/CaCO₃ sheets. Therefore, the change in dynamic mechanical properties observed only for drawn PCL/CaCO₃ sheets were strongly dependent on the orientational structure, which was formed under shear stress of the stretching drawn process. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2376-2382, 2001

Key words: $poly(\varepsilon$ -caprolactone); ¹³C solid-state NMR; orientation; crystalline structure; chemical shift tensor

INTRODUCTION

Poly(ε -caprolactone) (PCL) is a biodegradable polymer formed by ring-opening polymerization of lactone. This polymer decomposes rapidly and completely in a typical compost environment, which makes it an ideal replacement for nonde-

Journal of Applied Polymer Science, Vol. 80, 2376–2382 (2001) © 2001 John Wiley & Sons, Inc.

gradable polymers in numerous applications like yard-waste bags, surgical, and pharmaceutical materials.^{1,2}

The crystal structure of PCL has been determined by X-ray diffraction.^{3,4} Two types of conformations were reported: one is the planar zigzag conformation, and the other is a slightly distorted nonplanar zigzag conformation. A recent electron diffraction study revealed that the latter conformation is more suitable.⁵ Furthermore, the structure of PCL in the solid state has been characterized by ¹³C solid state NMR.⁶ Kaji and Horii assigned the ¹³C CP/MAS NMR spectrum of PCL

Correspondence to: T. Asakura.

Contract grant sponsor: Bio-oriented Technology Advancement Institute.

on the base of the assignment of the solution ^{13}C NMR and relaxation studies. The ¹³C spin-lattice relaxation time analyses revealed that the PCL sample contains three components with different T_{1C} values, which were assigned to the crystalline, mobile crystalline, and noncrystalline components. By analyzing the ¹³C spin-spin relaxation times (T_{2C}) , it was found that the noncrystalline component can be further resolved into the crystalline-amorphous interfacial and amorphous components. The fractions of the crystalline, interfacial, and amorphous components were finally determined to be 0.42, 0.30, and 0.28, respectively. A detailed discussion of the molecular motion of the crystalline region of PCL chains was also given.

However, the glass transition temperature (T_g) and melting temperature (T_m) of PCL are very low, that is, -60° C and 60° C, respectively. Therefore, to improve the mechanical properties, the addition of environmentally benign materials such as Calcium Carbonate (CaCO₃), silica, and clay to PCL is generally required for industrial applications. The increase in mechanical strength and biodegradability for PCL/clay and PCL/CaCO₃ mixtures have been reported.^{7,8} However, there have been no studies on the structure of PCL in the solid state of these mixture samples.

In this article, we reported the structure of oriented PCL as a function of $CaCO_3$ content determined with ¹³C CP MAS and ¹³C CP solid-state NMR. The solid-state NMR analytical methods applied for Poly(ethylene terephthalate)⁹ and Poly(L-lactic acid)¹⁰ were used in this study. Especially, the relationship between the change in dynamic storage modules, E', of the oriented samples with the heterogeneous structure was investigated.

EXPERIMENTAL

Materials

A commercial sample of Poly(ε -caprolactone) (PCL H-7) with d = 1.16 g/cm³ was purchased from Dicel Kagaku Kogyo Ltd (Japan). CaCO₃ particles with an average particle size of 1.25 μ m, used for the dispersed particles, were purchased from Shiraishi Calcium Ltd (Japan).

 $\rm CaCO_3$ and PCL were mixed in a two-roll mill (Toyo Seiki Ltd), at 140°C for 10 min. The samples for elastic modulus observation, $^{13}\rm C$ CP NMR observation and $^{13}\rm C$ CP MAS observation were

Figure 1 Preparation of a uniaxially oriented block sample of PCL/CaCO₃ sheet for ¹³C CP NMR observation as a function of $\beta_{\rm L}$, the angle between the machine draw direction (MD) and the magnetic field.

prepared by mold pressing at 150°C under a pressure of 10 Mpa to form a sheet of 1.0 mm in thickness and then cut into rectangles of dimensions, 10.0×50.0 mm. Uniaxially drawn sheets were prepared with a draw rate of 100 mm/min and a draw ratio of 4.5 at 50°C by a one-way stretch method using an ORIENTEC tensile tester. Especially, the oriented samples for ¹³C CP NMR observation used 3×4 mm cut sheets, as shown in Figure 1.

Dynamic Storage Modulus Measurement

Storage modulus, E', and loss elasticity, E'', were obtained from a Dynamic storage modulus instrument, DDV-25FP Visco-elastic Analyzer manufactured by A&D Ltd, at 25°C and 11 Hz.

¹³C NMR Measurement

¹³C CP MAS NMR observations were performed on a CMX 400 NMR spectrometer operating at 100 MHz at 25°C. The cross polarization (CP) technique (Hartmann-Harn-matched condition) with contact time = 7 ms was used with a recycle delay of 3 s. Sample spinning rate was set to be 5 kHz. Typically 20,000 FIDs were accumulated for each spectrum. The chemical shift of the methyl peak of hexamethylbenzene was used as chemical shift reference and converted to 17.3 ppm from TMS. Assuming a Gaussian distribution, line shape analyses of the carbonyl peaks were carried out. 13 C CP NMR observations were performed on a JEOL EX270 NMR spectrometer operating at 67.8 MHz at 25°C. The CP technique (Hartmann-Harn-matched condition) with contact time = 2 ms was used with a recycle delay of 5 s and a spin-locking field strength of 1.2 mT. Typically 15,000 FIDs were accumulated for each spectrum.

RESULTS

Dynamic Mechanical Properties of PCL/CaCO₃ Compounds

The effect of the $CaCO_3$ content on the storage modulus, E', and the loss elasticity, E'', of both undrawn and drawn sheets of PCL/CaCO3 are shown in Figures 2 and 3, respectively. The loss elasticity, E'', (Fig. 2) shows almost the same curve for both of undrawn sheets [Fig. 2(b)] and drawn sheets [Fig. 2(a)] as a function of CaCO₃ content. These results are similar to those of PCL/ Clay blend system.⁷ In contrast, the curve of the storage modulus, E', of drawn sheets [Fig. 1(a)] is different from the undrawn sheets. The curve of E' slightly increased with increasing CaCO₃ content, and showed a plateau region having lower E' values than those of undrawn sheets [Fig. 1(b)]. At a lower filler content, less than 20 wt %, the storage modulus, E', of drawn PCL/CaCO₃ sheets increased with increasing CaCO₃ content. At above 20 to 45 wt % of CaCO₃, the storage modulus, E', showed constant values indepen-

Figure 2 Storage modulus, E', of drawn PCL/CaCO₃ sheets (\bullet) and undrawn PCL/CaCO₃ (\bigcirc) as a function of CaCO₃ content.

Figure 3 Loss modulus, E', of drawn PCL/CaCO₃ sheets (\bullet) and undrawn PCL/CaCO₃ (\bigcirc) as a function of CaCO₃ content.

dent of the CaCO₃ content. At more than 45 wt % of CaCO₃, the storage modulus, E', slightly increased one more.

Thus, it is clear that some factor that can affect the storage modulus, E', occurs under a shear stress during the drawing process of the PCL/ CaCO₃ compounds. There are many factors, such as matrix toughness, interphase adhesion, and particle aggregation, that can affect the storage modulus, E', of drawn PCL/CaCO₃ compounds.

¹³C Solid-State NMR Powder Pattern Spectrum of PCL

In the process of structural analysis of oriented PCL/CaCO₃ compounds with angle-dependent solid-state NMR, it is necessary to determine the chemical shift tensor values of carbonyl peaks of PCL powder. Figure 4 shows the carbonyl region of the ¹³C CP NMR spectrum of the PCL powder sample together with the simulated spectrum. Any carbon peaks due to the calcium carbonate $(CaCO_3)$ could not be observed in the ¹³C CP NMR spectrum as is expected from the ¹³C CP/MAS NMR spectra, as shown below. After the simulation,¹¹ the chemical shift tensors were determined to be $\sigma_{11} = 128$ ppm, $\sigma_{22} = 146$ ppm and $\sigma_{33} = 260$ ppm. Here, the line broadening was assumed to be 5 ppm in the simulation. The chemical shift tensor determined here will be used for the structural determination of the oriented components of PCL and PCL/CaCO₃ compounds.

Structural Analyses from ¹³C NMR Carbonyl Peaks of the Oriented PCL/CaCO₃ Compounds with Draw Rate 100 mm/min

Figure 5 shows the ¹³C CP NMR spectra of carbonyl carbons of uniaxially drawn (100 mm/min at 50°C) sheets with different CaCO₃ content as a function of $\beta_{\rm L}$, the angle between the drawn direction and the magnetic field. The line shapes of the carbonyl carbon are slightly different between the PCL and PCL/CaCO₃ compounds. In particular, the carbonyl peaks of PCL/CaCO₃ compounds are slightly broader than those of PCL, especially, at both $\beta_{\rm L} = 30^{\circ}$ and $\beta_{\rm L} = 60^{\circ}$. In addition, there were also little differences between the two kinds of PCL/CaCO₃ compounds (about 15 wt % and 35 wt %). The carbonyl peaks of the oriented component was slightly broadened with increasing $CaCO_3$ content. The simulated spectra (dot line) are also shown for the spectra of the carbonyl carbons with 35 wt % CaCO₃ (Fig. 6). The spectra with the powder pattern spectra subtracted from the observed spectra can be used for the simulation. The Euler angles $\alpha_{\rm F}$ and $\beta_{\rm F}$ defined in our previous articles^{9,10} were determined to be 10°

Figure 4 The ^{13}C powder pattern spectra of carbonyl carbon of PCL powder (the observed spectrum (lower) and simulated one (higher). The ^{13}C chemical shift tensors are determined as $\sigma_{11}=128$ ppm, $\sigma_{22}=146$ ppm and $\sigma_{33}=260$ ppm.

Figure 5 The ¹³C CP NMR spectra of carbonyl carbon uniaxially drawn (×4.5 at 50°C) PCL and PCL/CaCO₃ compounds (about 15 wt % and 35 wt %) as a function of $\beta_{\rm L}$, the angle between the draw direction and magnetic field.

and 5°, respectively, and the distribution parameter, p, determined by assuming Gaussian, was 13°. The structural parameters, $\alpha_{\rm F}$, $\beta_{\rm F}$, and, p, for the oriented components obtained for uniaxially oriented PCL/CaCO₃ samples are summarized in Table I as well as the fraction of the oriented and unoriented components. Only the p value was changed and the $\alpha_{\rm F}$ and $\beta_{\rm F}$ values remain constant. From the increasing p values as the CaCO₃ content increased, the oriented component of PCL/CaCO₃ compounds becomes more distributed than that of PCL. However, the average structure of the oriented components was kept constant.

¹³C CP MAS NMR Spectra of Undrawn PCL/CaCO₃ Compounds

Figure 7 shows the ¹³C CP MAS NMR spectra of undrawn PCL and undrawn PCL/CaCO₃ samples (CaCO₃; 15 wt % and 35 wt %, respectively). Any carbon peaks due to CaCO₃ could not be observed. The assignment of each peak has been reported.⁶ The peaks of C_1 , C_2 , and C_6 carbons was split into two lines: the upfield line of C1 and C6 carbons and the downfield line of the C2 carbon have been assigned to the noncrystalline component, whereas the counterpart line of these carbons are ascribed to the crystalline component.

Figure 8 shows the expanded ¹³C CP MAS NMR spectra of the carbonyl carbon of undrawn

Figure 6 The ¹³C CP NMR spectra of carbonyl carbon drawn (×4.5 at 50°C) PCL/ CaCO₃ sheet included 35 wt % CaCO₃ as a function of $\beta_{\rm L}$, the angle between the draw direction and magnetic field. Full and dotted curve shows observed and calculated spectra, respectively. The fraction of the two components, amorphous (30%) and oriented (70%) were determined by simulation. The spectral parameters were $\alpha_{\rm F} = 10^{\circ}$, $\beta_{\rm F} = 5^{\circ}$ and $p = 13^{\circ}$. When the chemical shift tensor are $\sigma_{11} = 128$ ppm, $\sigma_{22} = 146$ ppm and $\sigma_{33} = 260$ ppm.

PCL and undrawn PCL/CaCO₃ compounds (solid line) and the simulated spectra (dot line). By line shape analyses, the peaks were found to split into four peaks. Within the four peaks, the three peaks (I, II, III) at lower field were assigned to the crystalline components and the highest field peak IV to the noncrystalline component, respectively. The spectral patterns of the carbonyl carbon did not change with increasing CaCO₃ for the undrawn samples. Therefore, it appears that the structural change of PCL did not occur even if CaCO₃ was included.

Figure 9 shows the ¹³C CP NMR spectra of the carbonyl carbon (solid line) and the simulated spectra (dot line) of drawn PCL and PCL/CaCO₃ samples (CaCO₃: 15 wt % and 35 wt %, respec-

Table I The Euler Angles, α_F , β_F , and Distribution of Fiber Axis, p, of Drawn PCL Specimens Including CaCO₃ Particles

CaCO ₃	0	15	35
p (°)	8	13	13
$\alpha_{\rm F}$ (°)	10	10	10
$\beta_{\rm F}$ (°)	5	5	5
Oriented component (%)	90	80	70

The fraction of oriented component is also listed.

Figure 7 13 C CP MAS NMR spectra of undrawn PCL and undrawn PCL/CaCO₃ compounds (about 15 wt % and 35 wt %).

tively) with draw rate of 100 mm/min. The spectra of drawn PCL and PCL/CaCO₃ samples changed dramatically with increasing CaCO₃ content. In the line-shape analyses, the four peaks observed for undrawn samples were also observed in these cases. In these drawn sheets, peak I disappeared when CaCO₃ was blended with PCL. And peak II also decreased with increasing the $CaCO_3$ content from 41% to 9–11%. In contrast, the intensities of peaks III and IV increased with increasing the $CaCO_3$ content from 21 to 34% and from 18 to 33-36%, respectively. The width of peak IV became broader with increasing CaCO₃ content. Peak IV corresponds to the amount of the powder component used in the ¹³C CP NMR analysis (Table I). Peak IV is the amorphous phase, and increased in the drawn PCL/CaCO₃ samples. In addition, a new peak, labeled V, was observed in the drawn PCL/CaCO₃ samples. At present, structural discrimination of these peaks (I, II, III, and V), which were assigned to crystalline structure could not be performed exactly, but it appears that when the PCL that had been blended with $CaCO_3$ particles was exposed under shear stress, some structural change occurred. The com-

Figure 8 13 C CP MAS NMR spectra of carbonyl carbon of undrawn PCL and undrawn PCL/CaCO₃ compounds and their deconvolution spectra into four fraction (I, II, III, IV, and V).

ppm from ext TMS.

Figure 9 13 C CP MAS NMR spectra of carbonyl carbon of drawn PCL and drawn PCL/CaCO₃ compounds and their deconvolution spectra into five fraction (I, II, III, IV, and V).

position ratio of each fractions are also described in Figure 9.

CONCLUSION

The loss elasticity, E'' (Fig. 2) shows almost the same curve for both of the undrawn sheets [Fig. 2(a)] and the drawn sheets [Fig. 2(b)] as a function of CaCO₃ content. In contrast, the storage modulus, E', of drawn PCL/CaCO₃ samples increased nonlinearly with increasing CaCO₃ and this curve showed lower E' values than those of undrawn samples. Therefore, some physical changes occurred under shear stress as a result of the process for PCL/CaCO₃ compounds.

By the simulation of ¹³C CP NMR spectra, one oriented component and one unoriented component was obtained in both undrawn samples and drawn samples. In this case, it is difficult to separate more two components; thus, the oriented component was treated as the mean structure of several oriented components. Also, the distribution parameter, p, of the oriented component of

Figure 10 Diagrammatic arrangement of oriented component and amorphous region in uniaxially oriented PCL and uniaxially oriented PCL/CaCO₃ compound.

drawn PCL/CaCO₃ compounds was 13°, which is larger than those (8°) of drawn PCL sample. Therefore, it is clear that adding CaCO₃ particles to PCL and drawing uniaxially, the arrangement of the oriented component was distributed.

From the line shape analyses of ¹³C CP MAS NMR spectra, four peaks were obtained in not only undrawn samples but also the drawn samples of PCL and PCL/CaCO₃ compounds. However, the line-shape patterns are different between undrawn samples and drawn samples. Although, for the undrawn samples, structural change did not occur within the four peaks with respect to the CaCO₃ content, dramatic structural changes occurred in the drawn samples. In the case of drawn samples, peaks I and II disappeared and/or decreased with CaCO₃ content and drawing; at the same time, peak III increased and a new peak, V, appeared in drawn PCL/CaCO₃ samples. In addition, peak IV, which was assigned to the amorphous component, increased,

and peak shape become broader with increasing $CaCO_3$ content.

From these result, the phenomena that was observed in the storage elastic modulus, E' [Fig. 1(b)] may be explained. In the CaCO₃ compounds, the arrangement of the oriented component was disturbed and the structure of the oriented component changed under the shear stress of the drawing process (Fig. 10). Therefore, in this PCL/ CaCO₃ system, the physical properties are strongly dependent on the oriented structures, which was formed under shear stress of the drawing process.

T.A. acknowledges support from Bio-oriented Technology Research Advancement Institution.

REFERENCES

- Scott, G.; Gilead, D., Eds. Biodegradable Polymer. Principal and Application; Chapman & Hall: London, 1995.
- Hollinger, J. O., Eds. Studies in Polymers Science 12, Biomedical Application of Synthetic Biodegradale Polymer, CRC Press: Boca Raton, FL, 1995.
- Bittiger, H.; Marchessault, R. H. Acta Crystalloger 1970, B26, 1923.
- Chatani, Y.; Okita, Y.; Tadokoro, H.; Yamashita, Y. Polym J 1970, 1, 555.
- Hu, H.; Dorset, D. L. Macromolecules 1990, 23, 4604.
- 6. Kaji, H.; Horii, F. Macromolecules 1997, 30, 571.
- Guillermo, J.; Nobuo, O.; Hidekazu, K.; Takashi, O. J Appl Polym Sci 1997, 64, 2211.
- Renstad, R.; Karlsson, S.; Sandgren, A.; Albertsson, A. C. J Environ Polym Degrad 1998, 6, 209.
- 9. Asakura, T.; Konakazawa, T.; Demura, M.; Ito, T.; Maruhashi, Y. Polymer 1996, 37, 1965.
- Ito, T.; Maruhashi, Y.; Demura, M.; Asakura, T. Polymer 2000, 41, 859.
- Nicholson, L. K.; Asakura, T.; Demura, M.; Cross, T. A. Biopolymers 1993, 33, 847.